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Abstract  —  Gallium Nitride (GaN) amplifiers have 

demonstrated very high power density as well as wide band 
width in previous research. This paper examines their use in 
supplying flat gain, power, and linearity across a large band 
width. It demonstrates two types of power amplifiers: a Ft 
Doubler (FT2) amplifier and a Cascode amplifier, both of which 
require a simple PCB tune. Both amplifiers show 0.2 to 4GHz 
bandwidth with 30 dBm P1dB output power. The 3GPP 
WCDMA output power is 20 dBm at -45 dBc ACLR.   

 
Index Terms  —  Gallium Nitride (GaN), High Electron 

Mobility Transistor (HEMT), Linearity, Power Amplifiers, 
Software Defined Radio, Wide Band. 

I. INTRODUCTION 

GaN HEMT amplifiers have been of keen interest in recent 
years.  Their inherent high voltage operation, high power 
handling capability and their accompanying high impedances 
offer much promise for use both in military and commercial 
telecommunications, especially when fabricated on high 
thermal conductivity substrates such as SiC [1]. In such 
applications, gain and power are often optimized, and the 
band widths of interest are relatively narrow compared to the 
potential of GaN, though they are wide compared to other 
technologies such as LDMOS.  

GaN amplifiers have also been developed to address high 
linearity needs.  The performance of a class B amplifier in 
standard double ended configuration is reported in [2] and a 
single ended push pull configuration is reported in [3].  The 
results showed that GaN could provide not only large gain and 
power but also good linearity in a wide band.  Additionally, 
the use of flip-chip integration of GaN HEMTs mounted to 
SiC substrates which contain the necessary passive elements 
for amplifier construction has been demonstrated in [4].   

Several methods to produce wide band GaN HEMT 
amplifiers are described in [5] – [8]. This paper investigates 
such wide band GaN amplifiers like Ft doubler (FT2) and 
Cascode amplifiers that provide not only flat gain and power 
over its operating band, but also flat linearity in the same 
band, which would be ideal for modern communication 
systems, regardless of modulation type that is employed.  
These wide band power amplifiers promise significant 
inventory reduction and cost saving as compared to multiple 
LDMOS or GaAs devices required to address the same bands.  
Furthermore, they enable seamlessly frequency hoping for 
emerging software defined radio applications.  

The second part of this paper describes the construction of 
FT2 and Cascode amplifiers using discrete GaN HEMT 
devices and GaAs IPC (Integrated Passive Components) dice 
in an AlN SO8 package.  The third part discusses measured 
results from the amplifiers, and is followed by conclusions. 

II. AMPLIFIER DESCRIPTIONS 

The amplifiers employed a hybrid construction: passive 
matching and stabilization components were made on GaAs 
dice (IPC process) and these dice were then wire bonded to 
discrete GaN HEMT dice to form the amplifier.  By using 
these IPC dice, a large area of expensive SiC substrate is 
saved from a true MMIC configuration.  Additionally, large 
quantities of IPC variations can be made for one amplifier to 
ensure the optimum performance.  Finally, the turn time of the 
IPC process is much shorter than that for a GaN MMIC, thus 
enabling fast design iterations.  In order for the devices to 
meet thermal requirements for continuous wave applications, 
high-K conductive epoxy was used to mount the devices to a 
high thermal conductivity AlN SO8 package that is also being 
used for higher power GaAs amplifiers [9]. 

The GaN ICs were unconditionally stable and were fully 
matched to 50 ohm to the package pins. The inherent high 
port impedances of GaN HEMTs enables simple, wide band 
matching structures:  only DC blocking capacitors are needed 
on evaluation boards.  The drain bias voltage Vdd was 28V. 

 (a)  Ft Doubler Amplifier 

 The amplifier was constructed using two separate GaN 
HEMTs with an individual gate periphery of 2 x 400 um thus 
yielding 1600 um total gate periphery.   This type of amplifier 
is a modified Darlington amplifier and it makes use of a 
common Vdd connection for each GaN HEMT as shown in 
Fig. 1a.  The picture of a finished FT2 in package is shown in 
Fig. 1b.  Its input stage is a common drain device whose 
source connects to the gate of the output device via a coupling 
capacitor and shunt resistor / inductor combination.  The 
overall amplifier design was patterned after similar multi-die 
GaN FT doubler amplifier designs of K. Krishnamurthy [6] & 
[7] along with the inductive compensation of the feedback 
loop as suggested by Chung et.al. [8].   
 The function of the coupling capacitor and of the shunt 
resistor / inductor combination is to not only adjust the band 
width but also to ensure that stability is achieved and to ensure 
that each GaN HEMT contributes equal output power over as 
wide a frequency as possible so as to achieve flat gain, power, 
and linearity [6] 
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Fig. 1a.  Ft Doubler amplifier schematic 
 
 

 

 
 

 
 

 Fig. 1b.  Ft Doubler amplifier photograph 
 

This coupling capacitor value is chosen to be the same 
value as the Cgs of the following, output stage, accounting for 
any parasitic capacitances and stray inductances, so that the 
effective Cgs of the output stage is halved or nearly halved 
and its Ft is effectively doubled so that a wide, effective 
operating bandwidth may be achieved.  This value is 
determined through both simulations and on-safer measured 
data for the 2x400 um stage GaN HEMTs.  In so doing, band 
width is extended at the expense of gain, since the gain-
bandwidth product must be maintained. 

Additionally, the shunt series resistor and inductor 
combination values were selected so as to not only provide 
stability to the amplifier but also to provide equal or nearly 
equal distribution of power between the input and output 
FETs over frequency, in order to produce gain and output 
power as flat as possible across the frequency band:  

GmR /2=  and  where Gm and 
Cgs are properties of the input HEMT, which is also the same 
as the output HEMT in this design.  [6].   

GmRiCgsL /2 ××=

 
 
 
 

(b)  Cascode Amplifier 

This GaN cascode amplifier is basically two FETs stacked 
atop each other, such that the drain of the input FET connects 
to the source of the output FET.  Thus, a common source 
amplifier feeds a common gate amplifier.  Fig. 2 shows the 
schematic of a Cascode amplifier. 

In the construction of this amplifier, all GaN HEMTs were 
constructed on one die, and two integrated passive dice were 
used along with this GaN die in order to construct the 
amplifier.  The total gate periphery is 800 um.  This cascode 
amplifier design offers a higher output impedance than other 
amplifier types, thus perhaps offering even wider band width 
potential than that of the FT doubler amplifier.   As with the 
FT doubler amplifier, the drain voltage Vdd was 28 V. 
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Fig. 2.  Cascode amplifier schematic 

 
Much attention was given to the proper on-die bypassing 

and stabilization of the output stage, as well as correctly 
biasing this output stage, since it is challenging to establish 
the best Idd through the input FET and the output FET.  In 
order to set not only the best output power but also the best 
dynamic range since for a given Vdd, the input FET voltage 
swing is limited by the Vds of the output FET.  

Yet perhaps an even larger challenge is ensuring that the 
input impedance of the common-gate second stage is zero, 
which is also the load to the first stage.  In this case the load 
line is vertical and power transfer between stages is at a 
maximum.  

Again for stabilization drain to gate negative feedback is 
used, along with several shunt resistive feedback structures, 
which sacrificed some gain for the resulting unconditional 
stability and wider band width.  The input prematch is a two 
stage design, using low Q stages to further ensure a broad 
operating band width. 

III. RESULTS 

(a) FT Doubler Amplifier 

All measured results were obtained using an evaluation 
PCB with AC coupling capacitors and a single shunt 0.5 pF 
capacitor in both the input matching network and the output 
matching network.  The printed circuit board (PCB) is not 
shown. 
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The circuit is presented in Figure 1a.  The dice were 
mounted to the AlN package die flag in the conventional 
active-side up configuration.  A photograph shows a complete 
amplifier (Figure 1b). 

The small and large signal results show the comparison 
between simulated results and measured results (Figure 1c).  
The major difference between the two data sets is a difference 
in gain, which is attributed to the package ground / mounting 
plane inductance.  The chosen package, one made of AlN 
ceramic, provides a ground path through vias from the 
backside metal to the die mounting flag, and the inductance of 
these vias causes gain to degrade especially at frequencies 
higher than 2 GHz.  This gain degradation leads to the use of a 
shunt 0.5 pF capacitor in the input match and also a shunt 0.5 
pF capacitor in the output match, and the simulated and 
measured data both reflect the use of these two external parts.  
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 Fig. 2.  FT Doubler amplifier small signal s-parameters and 

large signal data (solid lines are measurements) 
 

The large signal data over frequency show that the 
compression point of nearly 1 W is very flat from 800 MHz to 
3 GHz, as is the output power required for -45 dBc.  The 
WCDMA 3GPP ACLR data shows some degradation at 3 
GHz due to the 3.3 GHz upper limit of the signal generator.  
However, the s-parameters show the wider bandwidth that is 
available. 

 (b) Cascode Amplifier 

All measured results were obtained using an evaluation 
PCB with AC coupling capacitors and a single shunt 0.5 pF 
capacitor in both the input matching network and the output 
matching network.  The PCB is not shown. The circuit is 
presented in Figure 1a.  The dice were mounted to the AlN 
package die flag in the conventional active-side up 
configuration.  A photograph shows a complete amplifier 
(Figure 2).   

The small and large signal results show the comparison 
between simulated results and measured results (Figure 3).  
As with the FT doubler amplifier which also uses the same 
package type, the major difference between the two data sets 

is a difference in gain, which is attributed to the package 
ground / mounting plane inductance.   
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Fig. 3.  Cascode amplifier small signal s-parameters and large 

signal data (solid lines are measurements) 
 

The large signal data over frequency show that the 
compression point of nearly 1 W is very flat from 800 MHz to 
3 GHz, as is the output power required for -45 dBc.  The 
WCDMA 3GPP ACLR data shows some degradation at 3 
GHz due to the 3.3 GHz upper limit of the signal generator.  
However, the s-parameters show the wider bandwidth that is 
available. 

III. CONCLUSIONS 

Wide band width power IC amplifiers made of GaN 
HEMTs show much promise to deliver flat gain, power, and 
linearity across all major analog and digital communications 
frequency bands.  Since they run off the standard system 28V 
and require only a single, simple PCB tune, these GaN HEMT 
amplifiers offer an extremely easy to use solution for modern 
communications. Further process improvements to 
performance in future designs will be made possible by the 
incorporation of an improved,  second generation GaN 
process that includes ground vias, as well as passive  matching 
elements on the GaN HEMT substrate.  

Another planned process improvement is to optimize the 
compression characteristics by reducing RF dispersion within 
the GaN die.  These two improvements will not only increase 
gain, power, and linearity, but also they will further extend 
band width and stability. 

A major package level improvement that is planned is the 
transition from a high thermally conductive epoxy and 
package to standard epoxies and plastic packages.  This 
transition will be possible due to extensive in-house research 
that investigates the best combination of package type and 
plating with available standard epoxies that will deliver the 
lowest Tj for a given output power. 

Once the transition to standard epoxies and packages is 
complete, further continuous price reductions will be possible, 
which coupled with the inherent wide band width of GaN 
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HEMTs, will provide a simple  low cost solution to allow a 
single amplifier chain to meet multiple communications and 
modulation standards and frequencies. 
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